个人主页
唐健
职称: 教授,博士生导师
学位: 博士
毕业学校: 德国维尔茨堡大学
所在学科: 粒子物理与核物理
研究领域: 超越标准模型新物理的研究、新型粒子探测器研发

- 经费来源:国家自然科学基金,广东省自然科学基金,中科院战略先导计划子课题等。
- 发表第一作者/通讯作者SCI论文多篇,已授权国家发明专利4项。
- 参加多个粒子物理实验国际合作组,已发表3篇国际实验合作组文章。
- 2019年和2020年两次获评中科院粒子物理前沿卓越创新中心“青年优秀人才”。
- 国际学术研讨会LP2017组委会成员。
- 国际学术研讨会NuFact(2021-2023)中微子振荡分会主席。
- Frontier of Physics期刊青年编委。
- 期刊审稿人:Phys. Rev. Lett., Phys. Rev. D, Chinese Physics C, AHEP, MPLA等。
主要经历
- 2022.04—至今 教授,物理学院,中山大学,广州,中国
- 2015.01—2022.04 副教授,物理学院,中山大学,广州,中国
- 2014.02—2014.12 博士后研究员,马克思普朗克物理研究所,慕尼黑,德国
- 2013.05—2013.10 有机玻璃探测器安装,SNOLAB地下实验室,萨德伯雷,加拿大
- 2012.02—2014.02 博士后学者,阿尔伯塔大学物理系粒子物理中心,爱德蒙顿,加拿大
- 2011.04—2011.06 访问学者,欧洲理论物理中心(ECT*)博士训练项目,特伦多,意大利
- 2010.06—2010.07 访问学者,弗吉尼亚理工大学物理系,布来克斯堡,美国
- 2009.07 国际中微子暑期学校,费米实验室(FNAL),芝加哥,美国
- 2008.09—2012.02 博士学位(Ph.D),维尔茨堡大学理论物理与天体物理中心,维尔茨堡,德国
- 2005.09—2008.07 硕士学位(Msc.),南开大学物理科学学院,天津市,中国
- 2001.09—2005.07 学士学位(B.Sc),上饶师范学院,上饶市,江西省,中国
研究方向
- 中微子物理研究
- 基于加速器缪子源的新物理过程研究(日本J-PARC的COMET实验,MACE实验)
- 新型粒子探测器的研制及其多学科应用
交流与合作
中科院高能物理研究所,清华大学,上海交通大学,武汉大学,南开大学,日本大阪大学,德国美茵茨大学,美国弗吉尼亚理工大学等
技术专长
加速器中微子实验模拟与物理分析,新型液氩探测器研制,高纯锗探测器设计与信号模拟等
科研项目
- 广东省自然科学基金面上项目(2025.1-2027.12),主持。
- 校级重大科研平台预研项目(2024.12-2025.12),主持。
- 国家自然科学基金项目理论物理专款前沿引领项目(2024.1-2027.12),课题负责人。
- 广州市自然科学基金领航项目(2024.1-2026.12),主持。
- 高校业务费交叉学科重点专项(2023.1-2025.12),主持。
- 国家自然科学基金面上项目(2021.1-2024.12),主持。
- 广东省自然科学基金面上项目(2019.10—2022.9),结题,主持。
- 国家自然科学基金—大科学装置联合基金重点项目(2019.1—2022.12),参与。
- 中山大学超算应用专项(2019.1—2019.12),结题,主持。
- 中山大学科技成果转化类项目(2018.1—2018.12),结题,主持。
- 国家自然科学基金青年项目(2016.1—2018.12),结题,主持。
- 教育部重点实验室开放课题(2016.1—2017.12),结题,主持。
- 中国科学院战略先导计划子课题(2015.10—2016.9),结题,主持。
- 中山大学百人计划启动经费(2015.3—2017.12),结题。
社会服务
- 国际学术研讨会NuFact顾问委员
- 国家自然科学基金、广东省自然科学基金和广东省专利奖评审专家等
- 《Frontier of Physics》期刊青年编委,《大学物理》期刊青年编委,《物理实验》期刊“前沿导读”栏目专家
- Phys. Rev. Lett、Phys. Rev. D、Nuclear Science and Techniques等期刊审稿人
- 中国物理学会科普演讲团 “专家”
- 国家重大科技设施工作委员会科普专家
- 全国中小学科学教育专家委员会成员
- 广州市中学生“英才计划”科技特训营导师
- 湖南省衡阳市衡钢中学,科学副校长
代表论著
- Tensor interaction in coherent elastic neutrino-nucleus scattering. e-Print: 2502.10702 [hep-ph]
- Conceptual Design of the Muonium-to-Antimuonium Conversion Experiment (MACE). e-Print: 2410.18817 [hep-ex]
- Design of a CsI(Tl) Calorimeter for Muonium-to-Antimuonium Conversion Experiment, Siyuan Chen, Shihan Zhao, Weizhi Xiong, Ye Tian, Hui Jiang, Jiacheng Ling, Shishe Wang, Jian Tang. Front. Phys., 2025, 20(3): 035202
- Determination of Ultra-trace Levels of 238U, 232Th, and 40K in Polymethyl Methacrylate by ICP-MS, Shunqing Feng, Mengting Li, Wenqin Wang, Xiangyue Wang, Chunhao Huang, Hongtao Liu, Jian Tang. Atomic Spectroscopy, 2025,46(1):84-93.
- Enhancing plastic scintillator performance through advanced injection molding techniques, Jiahao Zhong, Nouman Ali Shah, Jian Zhou, Jian Tang, Radiation Physics and Chemistry, (2025), 226, 112193.
- Optimization of muonium yield in perforated silica aerogel, Shihan Zhao, Jian Tang. Phys.Rev.D 109 (2024) 7, 072012
- Development of a scintillating-fiber-based beam monitor for the coherent muon-to-electron transition experiment, Xu, Yu and Ning, Yun-Song and Qin, Zhi-Zhen and Teng, Yao and Feng, Chang-Qing and Tang, Jian and Chen, Yu and Fukao, Yoshinori and Mihara, Satoshi and Oishi, Kou. Nucl.Sci.Tech. 35 (2024) 4, 79
- Dark matter, CEνNS and neutrino new physics scrutinized by a statistical method in Xenon-based experiments, Jian Tang and Bing-Long Zhang. JHEP 12 (2024) 074
- Asymptotic analysis of binned likelihoods and the neutrino floor, Jian Tang and Bing-Long Zhang. Phys.Rev.D 108 (2023) 6, 062004
- Application of a supercomputer Tianhe-II in an electron-positron collider experiment BESIII, Chen, Jing-Kun and Hu, Bi-Ying and Ji, Xiao-Bin and Ma, Qiu-Mei and Tang, Jian and Yuan, Ye and Zhang, Xiao-Mei and Zhang, Yao and Zhao, Wen-Wen and Zheng, Wei. JINST 18 (2023) 03, T03003
- An Improved Treatment of Pile-up Events Demonstrated by a Cosmic Muon Lifetime Measurement Experiment, Jian LIAO, Tao YU, Yixing ZHOU, Yu XU, Yu CHEN, Jian TANG. Nuclear Physics Review 39 (2022) 1, 73-80
- Nonminimal Lorentz invariance violation in light of the muon anomalous magnetic moment and long-baseline neutrino oscillation data, Hai-Xing Lin, Jian Tang, Sampsa Vihonen, Pedro Pasquini Phys.Rev.D 105 (2022) 9, 096029
- Exploring SMEFT induced nonstandard interactions: From COHERENT to neutrino oscillations, Yong Du, Hao-Lin Li, Jian Tang, Sampsa Vihonen, Jiang-Hao Yu. Phys.Rev.D 105 (2022) 7, 075022
- Precision measurements and tau neutrino physics in a future accelerator neutrino experiment, Jian Tang, Sampsa Vihonen and Yu Xu. Communications in Theoretical Physics 74 (2022) 3, 035201
- MuGrid: A scintillator detector towards cosmic muon absorption imaging, Hang Yang, Guang Luo, Tao Yu, Shihan Zhao, Biying Hu, Zhencheng Huang, Han Shen, Lili Yang, Yu Chen, Jian Tang. Nucl.Part.Phys.Proc. 344 (2024) 27-30, Nucl.Instrum.Meth.A 1042 (2022) 167402
- Probing the doubly-charged Higgs with Muonium to Antimuonium Conversion Experiment, Chengcheng Han, Da Huang, Jian Tang*, Yu Zhang. Phys.Rev.D 103 (2021) 5, 055023
- Constraints on cosmic-ray boosted DM in CDEX-10, Zhan-Hong Lei, Jian Tang, Bing-Long Zhang. Chin.Phys.C 46 (2022) 8, 085103
- Non-standard interactions in SMEFT confronted with terrestrial neutrino experiments, Yong Du, Hao-Lin Li, Jian Tang, Sampsa Vihonen, Jiang-Hao Yu, arXiv: 2011.14292 [hep-ph]. JHEP 03 (2021), 019
- Global oscillation data analysis on the $3\nu$ mixing without unitarity, Zhuojun Hu, Jiajie Ling, Jian Tang, TseChun Wang, arXiv: 2008.09730 [hep-ph]. JHEP 01 (2021) 124
- Spin coating of TPB film on acrylic substrate and measurement of its wavelength shifting efficiency, Hang Yang, Zi-Feng Xu, Jian Tang, Yi Zhang, arXiv: 1911.08897 [physics.ins-det]. Nucl.Sci.Tech. 31 (2020) 3, 28
- Flavour Symmetry Embedded -- GLoBES (FaSE-GLoBES), Jian Tang, Tse-Chun Wang, arXiv: 2006.14886 [hep-ph]. Comp. Phys. Comm. 263 (2021) 107899
- Constraining sterile neutrinos by core-collapse supernovae with multiple detectors, Jian Tang, TseChun Wang, Meng-Ru Wu. arXiv: 2005.09168 [hep-ph]. JCAP 10 (2020), 038
- Prospects and requirements of opaque detectors in accelerator neutrino experiments. Jian Tang, Sampsa Vihonen, and TseChun Wang. arXiv: 2003.02792 [physics.ins-det]. Phys. Rev. D 102(2020)no.1, 013006.
- Study of a tri-direct littlest seesaw model at MOMENT. Jian Tang,TseChun Wang. arXiv: 1907.01371 [hep-ph]. Nucl. Phys. B952 (2020) 114915.
- Spin coating TPB film on acrylic substrate and measurement of its wavelength shifiting efficiency,Hang Yang,Zi-Feng Xu,Jian Tang* ,Yi Zhang, arXIv: 1911.08897 [physics.ins-det]. Nucl. Sci. Tech. 31 (2020) no.3, 28
- Precision measurements on dCP in MOMENT,Jian Tang, Sampsa Vihonen, Tse-Chun Wang. arXiv:1909.01548 [hep-ph] . Journal of High Energy Physics 1912 (2019) 130
- Non-standard interactions versus planet-scale neutrino oscillations,Wei-Jie Feng, Jian Tang*, Tse-Chun Wang, Yi-Xing Zhou. arXiv:1909.12674 [hep-ph]. Phys.Rev. D100 (2019) no.11, 115034
- Confronting tridirect CP -symmetry models with neutrino oscillation experiments,Gui-Jun Ding, Yu-Feng Li, Jian Tang*, Tse-Chun Wang. arXiv:1905.12939 [hep-ph]. Phys.Rev. D100(2019)no.5,055022.
- Invisible neutrino decays at the MOMENT experiment,Jian Tang,Tse-Chun Wang. arXiv:1811.05623 [hep-ph]. Journal of High Energy Physics 1904 (2019) 004.
- Extracting nuclear form factors with coherent neutrino scattering,Emilio Ciuffoli, Jarah Evslin, Qiang Fu, Jian Tang*. arXiv:1801.02166 [physics.ins-det]. Phys.Rev. D97 (2018)no.11,113003.
- Study of nonstandard charged-current interactions at the MOMENT experiment,Jian Tang,Yibing Zhang,arXiv:1705.09500 [hep-ph]. Phys.Rev. D97 (2018)no.3, 035018.
- Probing Direct and Indirect Unitarity Violation in Future Accelerator Neutrino Facilities,Jian Tang,Yibing Zhang,Yu-Feng Li,arXiv:1708.04909 [hep-ph]. Phys.Lett. B774 (2017) 217-224.
- TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution, JUNO Collaboration, Angel Abusleme et al. arXiv: 2005.08745 [physics.ins-det].
- Muon Flux Measurement at China Jinping Underground Laboratory, JNE Collaboration, Ziyi Guo et al., arXiv: 2007.15925 [physics.ins-det]. Chin.Phys.C 45 (2021) 2, 025001
- Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO, JUNO Collaboration Angel Abusleme (Chile U., Catolica) et al. arXiv: 2006.11760 [hep-ex]. Chin.Phys.C 45 (2021) 2, 023004
- Topological background discrimination in the PandaX-III neutrinoless double beta decay experiment. J. Galan et al.(PandaX-III Collaboration), J. Phys. G, 47(4):045108, 2020.
- Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB. R. Ajaj et al.(DEAP-3600 Collaboration), Phys. Rev. D, 100(2):022004, 2019.
- COMET Phase-I Technical Design Report. R. Abramishvili et al.(COMET Collaboration), PTEP, 2020(3):033C01, 2020.
- Design and Construction of the DEAP-3600 Dark Matter Detector. P.A. Amaudruz et al.(DEAP-3600 Collaboration), Astropart. Phys., 108:1–23, 2019.
- First results from the DEAP-3600 dark matter search with argon at SNOLAB. P.A. Amaudruz et al.(DEAP-3600 Collaboration), Phys. Rev. Lett., 121(7):071801, 2018.
- PandaX-III: Searching for neutrinoless double beta decay with high pressure136Xe gas time projection chambers. Xun Chen et al. (PandaX-III Collaboration), Sci. China Phys. Mech. Astron., 60(6):061011, 2017.
- Physics prospects of the Jinping neutrino experiment. John F. Beacom et al.(Jinping Collaboration), Chin. Phys. C, 41(2):023002, 2017.
- Neutrino Physics with JUNO. Fengpeng An et al.(JUNO Collaboration), J. Phys. G, 43(3):030401, 2016.